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Chapter 1

Introduction

When the theoretical foundations of what we know today as Bose-Einstein and Fermi-
Dirac statistics were laid, the experimental realization of some of their most intriguing
predictions was far out of reach.

The notion of Bose statistics dates back to a paper written by Satyendranath Bose in
1924, in which he used a statistical argument to derive the black-body photon spectrum.
Rejected by several journals, he sent it to Albert Einstein, who translated it into German
and had it published [1]. Einstein then extended the idea of Bose’s counting statistics to the
case of noninteracting atoms [2, 3]. A peculiar feature of this distribution over quantized
energy levels of identical particles with integer spin (bosons) is that at very low but finite
temperatures a large fraction of the atoms occupy the lowest energy state, a phenomenon
now known as Bose-Einstein condensation.

The distribution function for identical particles with half-integer spin (fermions) was
discovered shortly after by Enrico Fermi and Paul Dirac working independently of each
other [4, 5]. Due to the Pauli exclusion principle, which forbids any two identical fermions
from occupying the same quantum state, fermions cannot condense. Instead, at very low
temperatures fermions successively fill up the lowest energy states, forming the so-called
“Fermi sea”.

1.1 Ultracold atoms

After its theoretical prediction, it took more than 70 years – and the development of more
and more refined techniques – until the first Bose-Einstein condensate was experimentally
realized in dilute gases of rubidium and sodium atoms in 1995 [6, 7]. The transition to BEC
occurs when the thermal de Broglie wavelength λdB of the particles becomes comparable
to the inter-particle distance and the wave functions of the particles start to overlap. This
is termed the “quantum-degenerate regime”. The phase transition to BEC is of a purely
quantum-statistical nature, and is not induced by interactions between the particles, which
play an important role in most real systems. As the thermal de Broglie wavelength is
inversely proportional to the square root of the temperature, BEC can in principle be
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achieved by simply cooling a gas to sufficiently low temperatures. In most gases, however,
cooling leads to the formation of clusters and molecules, and therefore a phase transition
to a liquid or solid state will occur before the quantum-degenerate regime is reached. This
problem is circumvented by working at ultralow densities (typically ∼ 1014 cm−3), where
the timescale for liquefaction or solidification by inelastic three-body collisions in the gas
is much longer than that of thermal equilibration processes by means of elastic two-body
collisions.

The strong current interest in cold atoms is due largely to two outstanding proper-
ties: They are dilute, i.e. weakly interacting since the average inter-particle distance is
much larger than the scattering length; and, moreover, they can be cooled into the quan-
tum degenerate regime, where the individual atomic wave packets start to overlap and
macroscopic quantum mechanical behavior emerges.

A few years after degenerate Bose gases were realized, the cooling and trapping schemes
developed there were adapted and applied to fermions. This proved challenging, since evap-
orative cooling of a single-species fermionic gas is not possible due to the Pauli principle.
This difficulty is overcome by performing sympathetic cooling with mixtures of two types
of atoms, either two different fermions (which could either be different hyperfine states of
the same fermionic isotope, or different fermionic isotopes) or a boson and a fermion.

In early experiments, 40K [8] and 6Li atoms [9, 10] were cooled to about one-quarter
of the Fermi temperature, where emergent Fermi pressure was observed, as well as Pauli
blocking of collisions and deviations of the total energy and momentum distributions from
those of a classical gas. More recently, fermionic alkali atoms have been cooled to temper-
atures well below one-tenth of their Fermi temperature.

A new direction in the investigation of dilute quantum gases has been initiated by the
production and subsequent Bose-Einstein condensation of diatomic molecules from a gas
of fermionic atoms [11, 12, 13]. Feshbach resonances are essential to these experiments,
since they make it possible to tune the atom-atom scattering length over a wide range and
even change its sign [14, 15, 16]. It has thus become possible to study Cooper pairing and
Bardeen-Cooper-Schrieffer (BCS) superfluidity close to the BEC-BCS crossover as theo-
retically proposed by Leggett in 1980, who pointed out that fermionic superfluidity (or
superconductivity) and a molecular BEC can be regarded as two limiting cases of a more
general theory, with a smooth crossover conntecting the two [17]. The expected critical
temperature at the crossover and on the molecular side is sufficiently high to lie within
experimental reach, in contrast to weakly interacting Fermi gases, where the predicted
critical temperature for the superfluid state is extremely low [18]. Since their experimen-
tal realization, important physical characteristics of resonant Fermi superfluids have been
probed, such as the pairing gap [19] and the appearance of vortices in rotating superfluids
[20].

Further exciting possibilities opened up with the creation of the first quantum degen-
erate mixture consisting of two different fermionic species, 6Li and 40K [21, 22] and the
formation of heteronuclear Fermi-Fermi molecules [23].

So far, no heteronuclear molecular BEC has been realized, but the permanent dipole
moment of the 6Li–40K molecules and the resulting long-range dipole-dipole interaction
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makes this extremely interesting, as the creation of a polar BEC would open up the pos-
sibility of studying, for example, supersolid phases, which have been recently predicted
theoretically [24].

Another theoretical prediction that could possibly be explored in the Fermi-Fermi mix-
ture of 6Li and 40K is the phase transition to the so-called Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [25, 26]. In the strongly interacting regime accessed by means of Feshbach
resonances, theory predicts that in the case of mismatched Fermi surfaces a two-component
superfluid Fermi gas in an optical lattice can undergo a phase transition towards an in-
homogeneous superfluid state with Cooper pairs of nonzero momentum [27]: the FFLO
state.

Therefore, ultracold Fermi gases are highly tunable quantum many-body systems and
may in the future give new insight into such open fundamental questions of condensed
matter physics as the origin of high-temperature superconductivity.

Until now, apart from lithium and potassium a number of other fermonic species have
been trapped and cooled: metastable 3He*, 53Cr, 87Sr, 171Yb, 173Yb, 199Hg, 201Hg [28,
29, 30, 31, 32, 33, 34]1, but only one mixture of two different fermionic species has been
realized, 6Li and 40K in our lab, in Innsbruck and in Amsterdam [36].

1.2 Cross-dimensional rethermalization

In ultracold, dilute gases the interactions between particles are characterized by the s-
wave scattering length a. Due to the low temperatures achieved and the lack of long-range
or anisotropic interactions, the value of a determines a wide variety of equilibrium and
dynamical properties of quantum degenerate gases. In many ultracold gas experiments, as
mentioned above, a can be tuned from −∞ to ∞ by means of Feshbach resonances [14,
15, 37], enabling the experimenter to select any desired interaction strength. Further, the
efficiency of cooling processes relies on large elastic collision rates, which are proportional
to a2. In quantum gas experiments it is therefore crucial that one can accurately determine
the scattering properties of dilute ultracold gases.

Monroe and co-workers demonstrated in their pioneering work with ultracold 133Cs
atoms [38] that the elastic collision cross section σ, which is equal to 8πa2 for identical
noncondensed bosons, can be determined by means of a relatively simple rethermalization
measurement starting with a nonequlibrium gas. In this measurement, the rethermalization
rate for a gas in the so-called “collisionless regime” – defined by a collision rate much
lower than the trap periods of the atoms, cf. chapter 2 – was measured by selectively
removing energy from the gas in one spatial dimension and observing its subsequent cross-
dimensional rethermalization (CDR). In such an experiment, the relaxation is driven by
elastic collisions, and a detailed analysis based on Enskog’s equation showed that the
relaxation rate is proportional to the mean rate of collisions with a proportionality constant
α that denotes the average number of collisions per particle required for thermalization

1For the isotopes 111Cd, 113Cd this has not been shown beyond doubt, see Ref. [35].
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[39]. Various analytical and numerical studies have found that α is between 2.5 and 2.7
[38, 39, 40, 41, 42, 43].

Goldwin et al. extended the method of cross-dimensional rethermalization to probe
the s-wave scattering length between bosonic and fermionic atoms in Bose-Fermi mixtures
[44, 45]. In this case collisions between identical fermions are suppressed due to the Pauli
principle, so that the collision rate per fermion in the mixture depends only on the number
of bosons. It was shown that, in analogy with the single-species case, the relaxation
rate of the fermions is proportional to the mean rate of collisions per fermion, with a
proportionality constant β that reflects the mean number of collisions per fermion needed
for rethermalization. The mass difference between the bosons and fermions can lead to a
factor of 5 difference in β between light and heavy fermions in mixtures of experimental
interest.

1.3 This thesis

In this thesis, a generalized kinetic model of cross-dimensional relaxation is developed that
allows CDR in Fermi-Fermi mixtures to be described in terms of the masses and particle
numbers of the fermions involved. Predictions are made for relaxation rates in different
Fermi-Fermi mixtures. These predictions are tested and confirmed by means of detailed
classical Monte Carlo simulations of the relaxation process.

Based on the predictions of this model, we intended to perform the first CDR mea-
surement probing the interspecies collisional cross-section of an ultracold, dilute, non-
degenerate mixture of two fermionic species, lithium and potassium. Of special interest to
us was the s-wave scattering length between atoms prepared in the 6Li |F = 1/2,mF = 1/2〉
and 40K |9/2,−9/2〉 states, whose tuning by means of a Feshbach resonance has recently led
to the first production of ultracold diatomic molecules composed of two different fermionic
atomic species [23]. Our plan was to first measure the collision cross-section at an external
magnetic guidance field of 20 G far away from the Feshbach resonance at around 155 G.
A magnetic field of this strength has a negligible tuning effect on the scattering length, so
that one in principle obtains information on the absolute value of the interspecies scattering
length at 0 G. As a next step, we were planning to use the same experimental routine to
map out the Feshbach resonance, where the elastic scattering cross section changes dramat-
ically. In order to do so, CDR measurements would be performed at varying magnetic fields
in the vicinity of the resonance and one would expect significant changes in the relaxation
speed. This thesis is organized as follows. Chapter 2 provides the theoretical background
essential for the theoretical work and the experiments presented later on. My theoretical
work on cross-dimensional rethermalization in Fermi-Fermi mixtures is accounted for in
chapter 3. This chapter constitutes the main part of the work done during this thesis. The
generalized kinetic model is discussed extensively, and predictions for the relaxation rates
in arbitrary mixtures are derived. An in-depth treatment is given of the Monte Carlo sim-
ulations programmed to test these predictions. Finally, values for the number of collisions
per fermion are tabulated for a variety of possible mixtures. For reasons of clarity some
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calculations that were crucial in the derivation of the kinetic model have been put in a
dedicated section in appendix A. An outline of the experiment is given in chapter 4; there
our procedure is described in detail, measurement parameters are discussed and failure
modes are analyzed.
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Chapter 2

Theory

This chapter presents the theoretical concepts that are essential for both the simulations
and the experiments described in this thesis.

Section 2.1 gives an outline of the thermometry of ultracold gases and provides equations
needed for the analysis of the experimental conditions described in chapter 4. In section 2.2
basic scattering theory is reviewed and threshold energies are given for p-wave scattering of
the species used in the experiment. Finally, section 2.3 discusses the basics of the optical
dipole trap, the type of trap used in the experiment.

2.1 Ultracold gases

The theoretical treatment of cross-dimensional relaxation and the Monte Carlo simulations
presented in this thesis assume a classical gas at low temperatures. While classical behavior
of the gas is guaranteed for all temperatures in the simulations, quantum statistics has to
be considered when experimenting with “real” atoms, since at sufficiently low temperatures
the gas no longer behaves classically but rather requires a quantum statistical treatment.
It is therefore important to understand the onset of quantum degeneracy so one can ensure
that the experiments are performed at temperatures where a classical treatment of the
atoms is appropriate.

This section introduces basic concepts of the quantum statistics of trapped atomic gases
and derives intra-trap and time of flight density distributions for fermionic and classical
gases. As they are not of interest in this thesis, bosons are not treated in detail. The
reader interested in more information on the subject in general is referred to textbooks on
quantum mechanics and quantum statistics, e.g. [46, 47, 48, 49]. A more detailed treatment
of the physics of Fermi gases can be found in a number of review articles, e.g. [50, 51, 52].

2.1.1 Quantum statistics of fermions

According to quantum mechanics, the total wave function of a gas of identical particles
has to be either symmetric or anti-symmetric under exchange of any two particles in
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order to describe a physical state. Particles which have a many-particle wave function
that is symmetric under particle exchange are called bosons, while particles with an anti-
symmetric many-particle wave function are referred to as fermions. Whether a given
particle is a boson or a fermion is connected to the spin of the particles by the spin-
statistics theorem [53], which identifies particles with integer spin as bosons and those
with half-integer spin as fermions. For the remainder of this section, the focus will be on
fermions only.

Using the grand canonical partition function, one can derive the Fermi-Dirac distribu-
tion function nFD(εi), which describes the mean number of fermions in a single particle
energy eigenstate with energy εi. It is given by [49]

nFD(εi) =
1

eβ(εi−µ) + 1
, (2.1)

where β = (kBT )−1 is a measure for the temperature, kB is Boltzmann’s constant and µ is
the chemical potential which describes the decrease in energy associated with removing one
particle from the ensemble. The chemical potential is implicitly fixed by the normalization
condition ∑

εi

nFD(εi) = N , (2.2)

where the sum runs over all energy eigenstates of the system and yields the total atom
number N . Due to the anti-symmetry of their wave function, no two fermions can occupy
the same quantum state simultaneously, so the mean occupation number nFD(εi) can only
assume the values between zero and one. The chemical potential may assume any real
value.

Density of states

A classical particle with mass m trapped in a harmonic potential Vho(~r) can be described
by the single-particle Hamiltonian

H =
1

2m

(
p2
x + p2

y + p2
z

)
+ Vho(~r) with Vho(~r) =

m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

, (2.3)

where ωi are the angular trapping frequencies. Since the energy spectrum of a three-
dimensional harmonic oscillator is known exactly, the chemical potential can be calculated
directly for any given total particle number and temperature. With knowledge of the chem-
ical potential one can derive occupation numbers and density and momentum distributions
for a harmonically trapped ideal quantum gas.

In typical experiments, however, a large number of atoms are trapped and the thermal
energy is much larger than the level spacing, kBT � ~ω. It is therefore permissible – and
convenient for calculational purposes – to approximate the discrete spectrum of energy
levels εi, by a continuous density of states g(ε). This can be derived in the following way.
The energy levels of the harmonic oscillator are

ε (nx, ny, nz) =

(
nx +

1

2

)
~ωx +

(
ny +

1

2

)
~ωy +

(
nz +

1

2

)
~ωz , (2.4)
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where the numbers ni assume integer values 0, 1, 2, . . . For energies large compared with
~ωi, one may treat the ni as continuous variables and neglegt the zero-point motion. In
order to determine the number of states Gho (ε) with energy less than a given value ε, one
can introduce a coordinate system defined by the three variables εi = ~ωini, in terms of
which the plane ε =

∑
εi is a surface of constant energy. G (ε) is therefore proportional

to the volume in the first octant bounded by the plane [54],

Gho (ε) =
1

~ω̄3

∫ ε

0

dεx

∫ ε−εx

0

dεy

∫ ε−εx−εy

0

dεz =
ε3

6 (~ω̄)3 , (2.5)

where ω̄ = (ωxωyωz) is the geometric mean of the trapping frequencies. The density of
states is related to G(ε) through g (ε) = dG/dε, so that one obtains

gho(ε) =
ε2

2 (~ω̄)3 . (2.6)

One should note that Eq. 2.6 assigns a weight of zero to the ground state. For a system
with many identical fermions, this can be neglected as the ground state is occupied by one
fermion at most, so that N ≈ Nex.

With the definitions above, the number of atoms Nex in the excited states of a harmonic
potential is given by

Nex =

∫ ∞
0

nFD(ε)gho(ε)dε =

(
kBT

~ω̄

)
f3(z̃) with z̃ = eβµ , (2.7)

where the so called fugacity z̃ has been introduced, and the polylogarithm function1 fν(z)
(also called the Fermi-Dirac function) is defined for positive integer and half integer values
of ν by [49]

fν(z) =
1

Γ(ν)

∫ ∞
0

xν−1

exz−1 + 1
dx =

∞∑
k=1

(−1)k+1zk

kν
. (2.8)

Density distributions

In the experiment, most information is obtained from density distributions of clouds that
are imaged either inside the trap or after a short time of flight following their release from
the trap. In order to derive these density distributions, a semi-classical approach is taken.
In the Thomas-Fermi approximation ([55, 56]) each particle is treated as a wave packet
with definite position ~r and momentum ~p, and one assumes that there is one such state
per six-dimensional phase space volume h3 where h is Planck’s constant. Under typical
experimental conditions, this is a good approximation. The corresponding phase space

1The polylogarithm function is implemented in most established computational software programs
such as Mathematica. For further information on fast and accurate numerical calculations, see [22] and
references therein.
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density ρ (~r, ~p) can be determined by combining Eqs. 2.6 and 2.7 with the normalization
condition

N =

∫
ρ (~r, ~p) d~rd~p . (2.9)

Once again, the approximation N ≈ Nex is used, and one obtains the phase space density

ρ (~r, ~p) =
1

h3
nFD [εcl (~r, ~p)]

1

eβ(εcl−µ) + 1
, (2.10)

where εcl (~r, ~p) = ~p2/2m + Vho(~r) denotes the energy of a single classical particle in a
harmonic potential. lassical particle in a harmonic potential. The intra-trap distributions
in position and momentum space can then be determined by integrating Eq. 2.10 over the
respective complementary space. For the density distribution in position space, this leads
to

n(~r) =
1

λdB
f3/2

(
z̃e−βVho(~r)

)
, (2.11)

where the thermal de Broglie wavelength has been introduced:

λdB =
h√

2πmkBT
(2.12)

The resulting density distribution in momentum space is

n(~p) =
1

λdB

1

(mω̄)3
f3/2

(
e−β

p2

2m

)
. (2.13)

Note that n(~p) is isotropic, whereas n(~r) depends on the actual trapping potential.

If the cloud is not detected within the trap but rather following some time of flight
(tof ) after the trap is switched off, the initial momentum distribution is converted into a
spatial density distribution by the ballistic expansion. The momentum distribution can,
in principle, be directly measured in this way by taking the limit of long expansion times.
For intermediate expansion times, however, the initial density distribution must also be
taken into account. For a harmonic potential, the semi-classical approximation yields the
following density distribution after arbitrary times of flight [22]

ntof (~r, t) =

∫
ρ (~r0, ~p) δ

3

(
~r − ~r0 −

~pt

m

)
d3~r0d

3~p

=

∏
i ηi(t)

λ3
dB

f3/2

(
z̃e
− m

2kBT

∑
i[ωiriηi(t)]

2
)

(2.14)

which is simply a rescaling of the coordinates by the factor

ηi(t) =
[
1 + ω2

i t
2
]−1/2

. (2.15)
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Figure 2.1: Fermi-Dirac statistics. The plot qualitatively shows the occupation probability
at zero temperature (blue) and at increasing temperatures (orange and light blue).

The Fermi energy

In order to derive a relation that proves very useful in the thermometry of fermionic gases,
we now consider the limit of very low temperatures T → 0. It was pointed out above that
in a system of identical fermions, any state can be occupied by at most one particle. At
T = 0, therefore, all energy levels up to the the so-called Fermi energy EF = µ (T → 0, N)
will be filled, nFD (ε ≤ EF ) = 1, while those levels with energies higher than EF will be
empty, nFD (ε > EF ) = 0. The occupation probability can then be expressed by

nFD (ε, T = 0) = Θ (EF − ε) , (2.16)

where Θ is the Heaviside step function. The temperature corresponding to the Fermi en-
ergy, TF = EF/kB, is called the Fermi temperature. In Fig. 2.1 the occupation probability
nFD (ε) is plotted for several values of T . With increasing temperature, the step in nFD (ε)
gradually broadens with a width on the order of EF · T/TF . At temperatures T � TF ,
the occupation probability nFD (ε) � 1 for all energy levels, so that the gas behaves like
a classical Maxwell-Boltzmann gas where the indistinguishability of the particles is not of
importance. Thus, the Fermi energy marks the onset of quantum behavior of the gas.

Making use of Eq. 2.16 and 2.6 in the evaluation of Eq. 2.7 for T = 0 leads to a very
simple expression for the Fermi energy in a harmonic potential:

N =

∫ ∞
0

nFD(ε)g(ε)dε =

∫ EF

0

g(ε)dε =
E3
F

6(~ω̄)3
. (2.17)

Solving for EF , we obtain

EF = ~ω̄(6N)1/3 . (2.18)
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Combined with equation 2.7 this gives a useful, universal relation which is often used for
estimates in the experiment:

T

TF
=

[
1

6f3(z̃)

]1/3

(2.19)

2.1.2 The ideal classical gas

If considered in the classical limit, z̃ = eβµ � 1, the density and momentum distributions
derived from Eq. 2.10 are reduce to those of a Maxwell-Boltzmann gas. In the case of a
harmonic trapping potential, the expressions are Gaussian, and Eqs. 2.11 and 2.13 reduce
to

n (~r) =

(
1

π

)3/2
N

σxσyσz
e
−

∑
i

x2i
σ2
i (2.20)

n (~p) =

(
1

π

)3/2
N

κ3
e
−

∑
i

p2i
κ2
i , (2.21)

where σi = [2kBT/mω
2
i ]

1/2
and κ = [2kBTm]1/2 are the respective 1/e2 widths of the

distributions. In a time-of-flight expansion, the momentum distribution remains unchanged
and one obtains the evolution of the spatial density distribution by rescaling the waists
according to σi(t) = σiηi(t) with ηi(t) as defined above in Eq. 2.15.

2.2 Ultracold collisions

Collisions between particles can be either elastic or inelastic. Here I will focus on elastic
collision processes, since they are essential for the relaxation process studied in this thesis.
In the following, the concept of partial waves will be introduced, providing an elegant and
very useful way to treat elastic collisions in the the low-temperature limit.

Inelastic collisions have their origin in the internal degrees of freedom of the atoms.
For the right choice of atomic states in multi-species mixtures, spin-exchange collisions
and dipolar relaxation are forbidden by selection rules or energetically suppressed at low
temperatures. Further information on inelastic processes with regard to the mixture used
in our experiment can be found in Ref. [22]. The reader interested in more details of
scattering theory in general is referred to the literature [46, 57, 47].

2.2.1 Elastic collisions

The physical description of an elastic scattering process between two distinguishable par-
ticles with masses m1 and m2 can be separated into center-of-mass and relative coordi-
nates, where the center-of-mass motion is conserved. The motion of the two particles
relative to each other is equivalent to the scattering of one particle with reduced mass
µ = m1m2/(m1 +m2) off the interatomic interaction potential Vsc (~r).
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In an elastic collision the energy is an integral of the motion which allows the scattering
problem to be formulated in a time-independent form. Indexing energy eigenstates by k,
the corresponding stationary Schrödinger equation reads[

−~2∇2

2µ
+ Vsc (~r)

]
ψk (~r) = Eψk (~r) . (2.22)

For distances r much larger than the range of the interaction potential, one can construct
asymptotic solutions to Eq. 2.22 that are of the form [58]

ψk (~r) = C

(
eik~r + f (k, θ, φ)

eikr

r

)
for r →∞ . (2.23)

Here the first term on the right hand side corresponds to an incoming plane wave with
wave vector ~k and energy E = ~2k2/2µ, and the second term (which falls off radially
like a spherical wave) represents the scattered wave. C is a normalization constant and
r, θ, φ are spherical coordinates. The so-called scattering amplitude f (k, θ, φ) connects the
wave function with the measurable quantities of the differential and total scattering cross
sections,

dσ

dΩ
= |f (k, θ, φ)|2 and σ(k) =

∫
Ω

|f (k, θ, φ)|2 dΩ , (2.24)

where dΩ = sin θdθdφ is the differential solid angle. For most potentials, the scattering
problem cannot be solved analytically; in the case of a spherically symmetric potential Vsc,
however, one important simplification can be made. There one can separate out the radial
part of the solution function ψk (~r), which allows ψ (r, θ, φ) to be expanded in terms of
spherical harmonics Y ml

l (θ, φ), where l and ml are quantum numbers for the total angular
momentum and its projection onto the z-axis respectively:

ψk (~r) =
∑
l,ml

Rk,l(r)

r
Y ml
l (θ, φ) (2.25)

Contributions with the angular momentum quantum numbers l = 0, 1, 2 are commonly
referred to as s-, p-, and d-waves. Choosing the z-axis collinear with ~k leads to yet another
simplification as the problem then becomes independent of the azimuthal angle φ, which
means that only terms with ml = 0 contribute to Eq. 2.25. The scattering problem is
thereby reduced to the solution of the radial Schrödinger equation[

− ~2

2µ

d2

dr2
+

~2l(l + 1)

2µr2
+ Vsc(r)

]
Rk,l(r) = ERk,l(r), (2.26)

where the centrifugal barrier appears in addition to the scattering potential Vsc(r). If
Vsc(r) is known, the Schrödinger equation can be solved numerically. With Eq. 2.23 and
the use of some standard angular momentum algebra, the radial part of the asymptotic
wave function can be written

Rk,l(r) ∝
(
(−1)l+1e−ikr + e2iδleikr

)
(2.27)
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where phase shifts δl (defined modulo π) are introduced. The effect of the scattering
potential Vsc(r) is therefore simply to produce a dephasing between incoming and outgoing
partial waves. Once these scattering phases are calculated, one obtains the scattering
amplitude from the relation

f (k, θ) =
1

2ik

∞∑
l=0

(2l + 1)Pl(cos θ)
(
e2iδl(k) − 1

)
. (2.28)

Here Pl are Legendre polynomials. The total scattering cross section σ(k) can be deter-
mined by inserting Eq. 2.28 into Eq. 2.24 and making use of the orthogonality relation of
the Legendre polynomials, which yields

σ(k) =
∞∑
l=0

σl(k) =
4π

k2

∞∑
l=0

(2l + 1) sin2(δl). (2.29)

The total scattering cross section is thus given by a sum over the partial wave contributions.
The contribution of each partial cross section to the total scattering cross section has a
maximum of σl,max = 4π (2l + 1) /k2 which is called the unitarity limit [46].

2.2.2 Elastic collisions at low energies

There is one very important consequence of the centrifugal barrier that appears in Eq. 2.26.
If a partial wave has a collision energy which is much lower than the height of the barrier, it
will only probe the slowly varying and weak outer part of the scattering potential and thus
experience no significant phase shift. Scattering of partial waves with l ≥ 1 is therefore
suppressed for sufficiently low energies. For the scattering phase δl (modulo π) one finds
that ([58])

δl ∝ k2l+1 for k → 0 . (2.30)

Therefore the contribution of the partial waves to the total scattering cross section scales
as

σl =
4π

k2
sin2(δl) ∝ k4l ∝ E2l for k → 0 (2.31)

which is known as the Wigner threshold law ([59]). This means that for collision energies
much smaller than the height of the p-wave centrifugal barrier, only s-waves contribute to
the scattering process. In that case, the effect of the scattering potential on the phase δ0

can be described by a single parameter. This parameter is known as the s-wave scattering
length a, and is defined by

a = − lim
k→0

tan δ0(k)

k
. (2.32)

In case of distinguishable particles, the total scattering cross section is related to the
scattering length by

lim
k→0

σl=0(k) = 4πa2 (distinguishable particles). (2.33)
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If the particles are identical, however, one cannot distinguish the scattering processes
corresponding to f(k, θ) and f(k, π − θ). The scattering state must therefore be (anti-)
symmetrized accordingly. For bosons, the interference of the two terms leads partial-wave
contributions to the total scattering cross section that double for partial waves with even
values of l and cancel for odd values of l. For fermions, the contributions cancel for even l
and double for odd l. Thus, the total scattering cross sections in the s-wave limit are given
by

lim
k→0

σl=0(k) = 8πa2 (identical bosons) (2.34)

lim
k→0

σl=0(k) = 0 (identical fermions) (2.35)

for scattering between two identical bosons or two identical fermions, respectively.
A spin-polarized, single-species gas of fermionic atoms at low temperature is therefore

well described as an ideal quantum gas since there are no s-wave interactions and con-
tributions from higher order partial waves (l = 1, 3, . . . ) are strongly suppressed. This is
essential for the theoretical model of cross-dimensional relaxation and the corresponding
experiment described in the following chapters.

The long-range part of the actual interaction potential of neutral atoms is usually very
well approximated by the van der Waals interaction VvdW = C6/r

6, where the coefficient
C6 describes the strength of the interaction. Values of C6 can be found in the literature for
many species of interest ([60, 61, 62]). Using the long-range part of this potential allows the
height Eth(l) of the centrifugal barrier to be estimated by evaluating the effective potential
of Eq. 2.26 (the sum of the centrifugal potential and the interaction potential) at its local
maximum at r > 0. This yields

Eth(l) = 2

[
~2l(l + 1)

6µ

]3/2

C
−1/2
6 . (2.36)

For the fermionic species used in our experiment, we obtain threshold energies ELi,Li
th,p =

8mK × kB for intra-species p-wave collisions of 6Li and EK,K
th,p = 280µK × kB for intra-

species p-wave collisions of 40K [22]. The p-wave threshold for collisions between lithium
and potassium is ELi,K

th = 2.7 mK×kB.

2.3 Optical dipole trap

For the experimental realization of cross-dimensional relaxation described in Chap. 4, the
atoms were trapped in an optical dipole trap (ODT). This section presents the theoretical
concepts of optical dipole trapping and provides equations that will be needed later on in
this thesis.

In subsection 2.3.1 a formula will be derived that allows the intensity distribution of a
Gaussian beam to be calculated. The physical mechanisms of optical dipole trapping are
outlined in subsection 2.3.2, where formulas for the trap depth and the heating rate are
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Figure 2.2: Gaussian beam: The propagation axis z is depticted horizontally, the radial
axes vertically. An intensity profile is shown on the left.

provided. Subsection 2.3.3 discusses the trapping frequencies and provides an estimate of
the extent of the harmonic region of the trap.

2.3.1 Intensity distribution of Gaussian beams

Laser beams are well described by the so-called paraxial wave equation2

(
∇2
T + 2ik∂z

)
E0 ≈ 0 with ∇2

T = ∂2
x + ∂2

y (2.37)

where E0 is the amplitude of the electric field of an electro-magnetic wave propagating

along the z-axis E(~r) = E0(~r)ei
~k~z, and the wave vector k is given by the dispersion relation

k2 = ω2/c2. This equation is analogous to a two-dimensional Schrödinger equation in free
space with t replaced by z. One can find solutions to this equation that are of the form

E0(~r) ∝ 1√
1 + z2/z2

r

e−iϕ(z) exp

(
ik (x2 + y2)

2 (z + z2
r/z)

− x2 + y2

w2(z)

)
(2.38)

with w(z) = w0

√
1 + z2/z2

r , and zr = πw2
0/λ. The resulting intensity distribution

I(~r) ∝ |E(~r)|2 ∝ 1

1 + z2/z2
r

e−2(x2+y2)/w2(z) (2.39)

is Gaussian and describes the beam profiles observed for real laser sources very well. Here
w(z) is a measure of the radial width of the beam, and zr is the so-called Rayleigh range,
defined as the distance along the beam propagation direction from the waist to the point
where the cross-sectional area is doubled (see Fig. 2.2). The geometry of the beam prop-
agating along the z-axis is therefore completely defined by the waist w0 and either zr or
λ.

In order to obtain absolute values for the intensity at any point of the propagation

axis, the normalization constraint P
!

=
∫
I(~r)dxdy is used, which relates the total power

2The paraxial wave equation is a solution to the Helmholtz equation, which is obtained by a separation
of the space- and time-dependence in the wave equation for the electric field. For a detailed derivation see
e.g. [63]
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P to the integral of the intensity I over a plane perpendicular to the propagation axis z.
Separation of the beam waist w0 into its x and y components yields

I(~r) = 2 · P

w2(z)π
exp

(
− 2

1 + z2/z2
r

(
x2

w2
0x

+
y2

w2
0y

))
with (2.40)

zr =
w0xw0yπ

λ
, wx,y(z) = w0x,0y

√
1 + z2/z2

r , and w2(z) = w0xw0y(1 + z2/z2
r ) . (2.41)

Thus, the parameters that determine the intensity of the beam at a given point in space
~r = (x, y, z) are the wavelength λ, the total beam power P , and the respective beam waists
w0x, w0y (centered around ~r = 0) which are defined by that radial distance from the axis
r(x, y, z = 0) at which the intensity has decreased by a factor of 1/e2. In the general case
of different beam waists in the different directions, wz is the geometric mean of wx(z) and
wy(z).

2.3.2 Optical dipole trap details

Optical dipole trapping relies on the electric dipole interaction of atoms with intense light
which is detuned far from resonance with the nearest optical transition of the atoms. Due
to the far detuning the optical excitation can be kept extremely low, which provides an
advantage over traps based on radiation pressure (e.g. magneto-optical traps [64]) where
the minimum attainable temperatures are limited by the photon recoil and the achievable
density is limited by light-assisted inelastic collisions [65]. In addition, the trapping mech-
anism of optical dipole traps (ODTs) is largely independent of the particular magnetic
sub-levels of the confined atoms, in contrast with magnetic traps ([66, 67]) that can only
capture and confine so-called low field seeking internal states.

Red-detuned light – i.e., light with a wavelength longer than that corresponding to
the nearest atomic transition – results in a negative interaction energy, which draws the
atoms towards areas of stronger electric fields and thus higher intensities. Because of
its conservative character, this force can be derived from a potential which is, as will be
shown below, proportional to the light intensity I. The simplest implementation of an
optical dipole trap is therefore a focused Gaussian laser beam with wavelength longer
than the nearest optical transition. Since the intensity gradient and thus the confinement
along the propagation axis z of the beam are considerably weaker than in the directions
perpendicular to z, our experiment uses a crossed ODT consisting of two beams with
overlapping foci, where the confinement is similar in all directions. Much of the treatment
below is based on the comprehensive review article of Ref. [68].

Oscillator model

In order to derive the basic equations for the optical dipole potential and the scattering
rate, one can consider the atom as a simple oscillator subject to a classical radiation field.
The electric field ~E induces an atomic dipole moment ~p which oscillates at the driving
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frequency ω. The amplitude p of this dipole moment is related to the field amplitude E
by a complex polarizability α(ω):

p = α(ω)E. (2.42)

The real part of α(ω) describes the in-phase component of the dipole oscillation which
is responsible for the dispersive properties of the interaction. The interaction potential of
the induced dipole moment ~p in the driving field ~E is thus given by

Udip = −1

2

〈
~p ~E
〉

= − 1

2ε0c
< (α(ω)) I, (2.43)

which is proportional to the field intensity I = 2ε0c |E|2. Here the angular brackets 〈·〉
denote the time average over the rapid oscillating terms, and the factor 1

2
expresses the

fact that the dipole moment is an induced, not a permanent one.
The imaginary part of α(ω) describes the out-of-phase component of the dipole oscil-

lation and allows the power that is absorbed by the oscillator from the driving field to be
calculated:

Pabs =
〈
~̇p ~E
〉

= 2ω=(pE∗) =
ω

ε0c
= (α(ω)) I. (2.44)

When interpreted as scattered – i.e. absorbed and spontaneously re-emitted photons – Pabs
can be used to determine the corresponding scattering rate

Γsc(~r) =
Pabs
~ω

=
1

~ε0c
= (α(ω)) I(~r). (2.45)

Using a simple, classical model one can calculate the polarizability α of an atom. There
an electron with mass me is considered to be bound elastically to the core of the atom with
an oscillation eigenfrequency ωa that corresponds to the optical transition frequency of
the atoms. As an accelerated charge, the oscillating electron emits dipole radiation, which
results in a damping of the oscillation according to Larmor’s formula (see, e.g. Ref. [69]).
The polarizability is then calculated by integration of the equation of motion for the driven
oscillation of the electron, yielding

α = 6πε0c
3 Γ/ω2

a

ω2
a − ω2 − ı(ω3/ω2

a)Γ
(2.46)

with a damping rate Γ = e2ω2
a/6πε0mec

3 due to the energy loss via radiation at resonance
frequency ωa.

Combining the formulas above yields the following explicit expressions for the dipole
potential Udip and the scattering rate Γsc in the relevant case of large detunings and in-
significant saturation of the upper level:

Udip(~r) = −3πc2

2ω3
0

(
Γ

ωa − ω
+

Γ

ωa + ω

)
I(~r) (2.47)

Γsc(~r) =
3πc2

2~ω3
a

(
ω

ωa

)3(
Γ

ωa − ω
+

Γ

ωa + ω

)2

I(~r) (2.48)
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It is important to note that for detunings much smaller than the transition frequency
∆ = ωa − ω � ωa the dipole potential scales as I/∆, whereas the scattering rate scales
as I/∆2. For an increase in detuning the heating due to scattering will therefore decrease
more rapidly than the laser power requirements increase.

In order to determine the trapping potential of a linear dipole trap, the intensity
distribution of a Gaussian beam (Eq. 2.40) is substituted for I(~r) in Eq. 2.47. In gen-
eral, potentials are additive, so the trapping potential of a crossed ODT of several laser
beams can be calculated by simply summing over the individual potentials Udip,crossed =
Udip,1 + Udip,2(+ . . . ). This does not account for possible interference between the beams,
but is a valid approximation if the beams have slightly different frequencies, such that the
resulting lattice modulation oscillates much faster than the trapping frequencies. In the
experiment, this frequency shift between beams is realized by acousto-optic modulators
(AOMs)3.

Photon recoil heating

The most prominent and limiting heating mechanism of atoms in ODTs is heating due to
the spontaneous scattering of trap photons.

On absorbing and re-emitting a photon, an atom experiences a change in its kinetic
energy due to the conservation of momentum. This change in energy in either of the pro-
cesses, absorption and emission, can be quantified by considering the photon momentum,
leading to an expression for the so-called recoil energy Erec and a corresponding recoil
temperature Trec

Erec =
~2k2

2m
=

~2

2m

(
2π

λa

)2

=
1

2
kBTrec , (2.49)

where λa = 2πc/ωa is the wave length of the atomic transition and kB is Boltzmann’s
constant. The factor 1/2 denotes a degree of freedom (and makes Trec consistent with the
thermal energy considerations below).
One should note that the absorption of the photon occurs in the propagation direction
of the light field and is thus anisotropic, while the direction of its re-emission is random.
When this is taken into account, the overall heating corresponds to an increase of thermal
energy by 2Erec in a time Γ̄−1

sc , which allows a heating power to be defined:

Pheat = 2ErecΓ̄sc = ˙̄Ethermal . (2.50)

Here Γ̄sc is the average photon scattering rate per atom and Ēthermal is the mean thermal
energy per atom. In a harmonic potential, the mean energy per atom in thermal equilibrium
is given by

Ē = U0 + Ēkin + Ēpot = U0 + 2 · 3

2
kBT = U0 + 3kBT , (2.51)

where U0 = Udip(0) is the trap depth and the offset of the potential energy has been chosen
such that Epot = 0 at U0. Using this relation between mean energy and temperature,

3For details, see Ref. [70].
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one can now express the heating power resulting from photon scattering as a heating rate
describing the corresponding increase of temperature with time. Using 2.49 and 2.50, one
finds

˙̄E = Pheat ⇒ Ṫ =
1

3
Γ̄scTrec , (2.52)

which allows the temperature increase with time to be calculated if the average scattering
rate Γ̄sc is known. In order to obtain an expression for Γ̄sc, it is helpful to compare the
expressions for the dipole potential and the scattering rate given in Eqs. 2.47 and 2.48.
This shows that Γsc can be expressed in terms of Udip by

Γsc (~r) = −K
~
Udip (~r) with K =

(
ω

ωa

)3(
Γ

ωa − ω
+

Γ

ωa + ω

)
. (2.53)

Since this expression holds for any choice of ~r, it can be used to calculate the averages Γ̄sc
and Ūdip. Using that Ūdip = U0 + Ēpot = U0 + 3

2
kBT one is left with

Γ̄sc = −K
~

(
U0 +

3

2
kBT

)
. (2.54)

Combined with Eq. 2.52 this gives

Ṫ

T
= −

(
U0 + 3

2
kBT

)
Trec

3~

(
ω

ωa

)3(
Γ

ωa − ω
+

Γ

ωa + ω

)
. (2.55)

If the thermal energy of the atoms in the trap is small compared to the trap depth4

kBT � |U0|, which is often the case in experiments, the temperature-dependent term in
Eq. 2.55 can be neglected and the right hand side reduces to a constant heating rate due
to scattered light.

2.3.3 Harmonic approximation

Knowledge of the trapping frequencies of atoms in an ODT is essential as they determine
many physical properties of the system. The trapping frequency is the rate at which the
atoms, if considered as classical particles, oscillate in the trap and is usually calculated
by using a harmonic approximation, where the coefficients of a second order Taylor series
expansion of the dipole potential Udip around its minimum at ~r = 0 are identified with
those of a harmonic oscillator Uho(i) = 1

2
mω2

i i
2 (i = x, y, z). This yields

ωi =

√
1

m
∂2
i Udip(~r = 0) , νi =

ωi
2π

, (2.56)

where m is the mass of the atom being trapped.
An estimate of the harmonic region of the trap can be obtained by comparing a higher

order expansion of Udip with the second order terms and assessing the region as harmonic

4Here the absolute value is used since U0 < 0 for red-detuned traps.
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if the deviation of the higher order terms is small (e.g. smaller than 20 % of the absolute
value of Udip).

Under the influence of the earth’s gravitational potential, the atoms are shifted along
the direction of the gravitational acceleration ~g (“gravitational sag”). For atoms confined
in the harmonic region of the trapping potential, the gravitational sag is given by

∆z = − g

ω2
z

∝ m (2.57)

where ωz denotes the angular trapping frequency of the atoms along the direction of ~g.
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Chapter 3

Cross-dimensional relaxation in
Fermi-Fermi mixtures

This chapter presents theoretical work on the equilibration rate of non-degenerate Fermi-
Fermi mixtures undergoing cross-dimensional rethermalization (CDR).

Section 3.1 introduces the basics of CDR and gives an account of the previous work done
on single-species CDR of bosons, and on Bose-Fermi mixtures. In section 3.2 a classical
kinetic model of rethermalization is developed for the case of Fermi-Fermi mixtures. This
model allows estimates to be given of the time constants of the relaxation as a function
of the masses and particle numbers of the fermions in the mixture. Section 3.3 addresses
effects due to finite initial deviations from thermal equilibrium. Classical Monte Carlo
simulations were performed over a wide range of parameters to test and verify the validity
of the predictions of our model. Details of these simulations are given in section 3.4.
Finally, in section 3.5 predictions of the parameter β that connects the collision rates and
the relaxation rates are presented for a number of Fermi-Fermi mixtures of current or
possible future experimental interest.

3.1 CDR in a nutshell

If a gas is prepared with different mean thermal energies in the different Cartesian direc-
tions, i.e. Ex 6= Ey 6= Ez, the gas will subsequently relax into thermal equilibrium. In a
purely harmonic trap the only way for the gas to rethermalize is to spatially redistribute
its energy through collisions between the atoms. We focus here on temperatures well below
the p-wave threshold of the atoms, so that only s-wave collisions between distinguishable
particles need to be considered, as collisions between identical particles are suppressed
by the Pauli exclusion principle. In an elastic s-wave collision, the total energy and mo-
menta of the colliding particles are conserved, while their relative motion is completely
randomized. The isotropic nature of the scattering amplitude therefore leads to a uniform
redistribution of kinetic energy between the different directions. On the other hand, the
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potential energy of an atom can be considered to be, on average, equal to its kinetic energy
immediately following the collision. This assumption is valid in the so-called “collisionless”
regime, where the collision rate is small compared to the trapping frequencies1.

In the simulations described in this chapter and in the experimental attempts detailed
in chapter 4 parameters lying well within the collisionless regime were used in order to
ensure accurate results. J. Goldwin determined that the onset of hydrodynamic behavior
occurs when the mean collision rate 〈Γcoll〉 = 〈nσvrel〉 reaches the same order of magnitude
as the trap frequencies 〈Γcoll〉 ∼ ωtrap [45]. Typical values used in the Monte-Carlo simu-
lations presented in the following are 〈Γcoll〉 < 10−2ωtrap.

A detailed analysis of single-species CDR in a gas of bosons shows that the relaxation
has the form of an exponential decay, with a 1/e time constant proportional to the mean
time between collisions τ = Γ−1

coll[39]:

Γrelax =
1

α
〈n〉σ 〈vrel〉 , (3.1)

where n is the number density of the gas, σ is the elastic collision cross section, and vrel
is the relative collision speed. The angular brackets 〈·〉 denote thermal averaging2. Here
energy-independent s-wave collisions and Boltzmann statistics are assumed, so that the
mean collision rate can be written Γcoll = 〈nσvrel〉 = 〈n〉σ 〈vrel〉. The constant α, defined
as the ratio of collision and relaxation rates, describes the average number of collisions per
particle required for equilibration.

An extension to this model describing the rethermalization of a (spin-polarized) Bose-
Fermi mixture reveals that the mean relaxation rate per fermion can be expressed in
analogy with the single species case[71],

ΓF =
1

β
〈nB〉F σBF 〈vrel〉 . (3.2)

Here 〈nB〉F is the equilibrium density of the bosons, averaged over the fermion distribution;
σBF is the inter-species elastic collision cross section; and 〈vrel〉 is the relative collision speed
between bosons and fermions. The constant of proportionality β reflects the mean number
of collisions per fermion needed for rethermalization.

In a spin-polarized mixture of two fermionic species, only inter-species collisions con-
tribute to the redistribution of energy. The relaxation is therefore again expected to re-

1This is in contrast to the hydrodynamic regime, where a particle undergoes many collisions within a
time equal to the trap period. In this case, the atoms no longer undergo simple harmonic motion in the
trap. The kinetic energy of the atoms is continually re-randomized by collisions, so that the gas will have
an isotropic kinetic energy distribution while the potential (and center-of-mass kinetic) energies still retain
the initial anisotropy. This results in a relaxation rate which is slower than that of the same system in the
collisionless regime [45].

2 The thermal average of a function f(x, p) is obtained by summing over the values of f(x, p) in all
possible energy states the system can occupy: (

∑
x,p Z)−1 ·

∑
x,p Zf(x, p) where Z = Z(x, p) is the ther-

modynamic partition function. An in-depth treatment can be found in any textbook on thermodynamics
and statistical mechanics, for instance Ref. [48, 49].
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semble an exponential decay with a time constant for each species which is proportional
to the mean time between inter-species collisions:

ΓF,1 =
1

β1

〈n2〉1 σ12 〈vrel〉 ,

ΓF,2 =
1

β2

〈n1〉2 σ12 〈vrel〉 , (3.3)

where the terms on the right hand side are defined exactly as in Eq. 3.2.

For the type of relaxation treated here the gases have identical initial temperatures
Tx = ΩxTz, Ty = ΩyTz, and Tz, with Ωx,Ωy 6= 1. Since the gases rethermalize together,
they reach the same final temperature, which is given by T∞ = (Ωx + Ωy + 1)Tz/3 in the
classical gas limit. Therefore, there is no net transfer of energy between species during the
relaxation. This fact is crucial for the validity of Eqs. 3.3.

3.2 Classical kinetic model

To better understand the physics of the rethermalization process, we now consider an an-
alytic model for the relaxation. Here we closely follow the line of reasoning presented by
Goldwin et al. in [45, 71], providing substantial extensions to the existing model. Firstly,
the change from a Bose-Fermi to a Fermi-Fermi mixture allows estimates of the two con-
stants of proportionality β1 and β2 to be made. Secondly, both Goldwin’s theory and the
corresponding experimental work [44] assume cylindrical symmetry of the initial energy
anisotropy, i.e. Ex

Ez
= Ey

Ez
= Ω. To allow a wider scope in the experiment, the generalized

model also accounts for anisotropies with Ωx 6= Ωy.
The analysis is based on the Chapman-Enskog equation, which is equivalent to the

Boltzmann transport equation [48]. According to this treatment, the rate of change of
the ensemble average of any function of the two species’ positions and velocities, usually
denoted χ(~x1, ~v1; ~x2, ~v2), is given by

〈χ̇〉 = σ 〈nvrel∆χ〉 . (3.4)

Once more the assumption of energy-independent s-wave scattering has been used to
separate the collision cross section σ from the ensemble average. The quantity ∆χ is the
change in χ due to a single collision. We choose

χ1 ≡ E1,x − E1,z, (3.5)

and consider fermions of type 1 colliding with fermions of type 2. The energy E1,i denotes
the total (kinetic plus potential) energy of type-1 atoms in the ith direction. Note that
due to our interest in χ1 the ensemble average in Eq. 3.4 is taken only over the distribution
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function for the type-1 fermions. Immediately after a collision, only the kinetic energy of
the particles has changed, so that

∆χ1 = ∆
(
Ekin

1,x − Ekin
1,z

)
=

1

2
m1∆

(
v2

1,x − v2
1,z

)
. (3.6)

As ∆χ1 has no position dependence, the type-2 particle density n2 can be removed from
the average, yielding

〈χ̇1〉 =
1

2
m1 〈n2〉σ12

〈
vrel∆

(
v2

1,x − v2
1,z

)〉
. (3.7)

Defining the center-of-mass (c.m.) and relative velocities in the usual manner,

~Vc.m. =
m1~v1 +m2~v2

m1 +m2

,

~vrel = ~v1 − ~v2, (3.8)

one can write

v2
1,x − v2

1,z =
(
V 2
c.m.x − V 2

c.m.z

)
+

(
m2

m1 +m2

)2 (
v2
relx − v2

relz

)
+2

m2

m1 +m2

(Vc.m.xvrelx − Vc.m.zvrelz) .

(3.9)

Since the collision leaves ~Vc.m. and |~vrel| unchanged, but randomly rotates the direction of
~vrel, one is left with

〈χ̇1〉 = −1

2

m1m2

(m1 +m2)
〈n2〉σ12

〈
vrel

[
m2

m1 +m2

(
v2
relx − v2

relz

)
+2(Vc.m.xvrelx − Vc.m.zvrelz)

]〉
.

(3.10)

Here only the quantities immediately before the collision need to be considered as there is
no preferred direction of ~vrel after the collision.

Calculating these ensemble averages for arbitrary masses and energy anisotropies –
which are in general different between species at intermediate times of the relaxation pro-
cess, compare figure 3.2 – is nontrivial, but some simple approximations may be used.

For the first terms one can easily show that for Boltzmann distributions in thermal
equilibrium one has 〈

vrelv
2
reli

〉
=

4

3
〈vrel〉

〈
v2
reli

〉
, i = x, z. (3.11)

For the other terms it is important to note that 〈Vc.m.ivreli〉 6= 0 for a gas with a cross-
dimensional energy anisotropy (compare Eq. A.1). For cross terms of the form 〈Vc.m.ivreli〉,
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which vanish under equilibrium conditions, one can therefore still consider the limit of
small deviations from thermal equilibrium. This yields a second approximation which is
similar to the above result:

〈vrelVc.m.ivreli〉 =
4

3
〈vrel〉 〈Vc.m.ivreli〉 . (3.12)

Extensive numerical integrations of Gaussian distributions verified that these approxi-
mations are reasonable for small anisotropies. Since they would only serve as a distraction
here, the details of these calculations and recommended limits for the anisotropies that
should be considered in Monte Carlo simulations and experiments are presented in ap-
pendix A. Also contained in the appendix is a plot showing the evolution of the values of
〈vrelv2

reli〉 over the course of a rethermalization process using realistic parameters, which
gives an illustration of the validity of the approximations. Combining these results leads
to

〈χ̇1〉 = −2

3
〈n2〉1 σ12 〈vrel〉

m1m2

m1 +m2

〈
m2

m1 +m2

(
v2
relx − v2

relz

)
+2(Vc.m.xvrelx − Vc.m.zvrelz)

〉
.

(3.13)

Accounting for the fact that in the collisionless regime the mean kinetic and potential
energies in a given direction are equal, one can now resubstitute for v1 and v2. Using
〈v1iv2i〉 = 0, one finally obtains

〈χ̇1〉 = −2

3
〈Γ12〉

m2

(m1 +m2)2 〈(2m1 +m2)χ1 −m1χ2〉 . (3.14)

Here the collision rate 〈Γ12〉 = 〈n2〉1 σ12 〈vrel〉 describes the rate per type-1 particle of
collisions with particles of type 2. Simply swapping 1 ↔ 2 in Eq. 3.14 yields the time
dependence of χ2 which is defined in analogy with Eq. 3.5. Introducing dimensionless
times τ1 = Γ12t and τ2 = Γ21t, the final result is:

d

dτ1

〈χ1〉 = −2

3

m2

(m1 +m2)2 〈(2m1 +m2)χ1 −m1χ2〉

d

dτ2

〈χ2〉 = −2

3

m1

(m1 +m2)2 〈(m1 + 2m2)χ2 −m2χ1〉 (3.15)

The solution of these coupled differential equations gives the time evolution of χ1 and χ2.
Note that because of the definition of Γ12 (Γ21), we are now in a position to not only
consider mixtures of fermions with different masses but also to make predictions for the
time evolution of mixtures with different atom numbers N1 and N2.
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Introducing a normalized mass η1 = m1

m1+m2
(η2 = m2

m1+m2
= 1 − η1), the solution of

Eq. 3.15 can be expressed in terms of η1 as

χ1(τ1) =
(1− η1)(1− 2η1)e−2τ1/3 + η1e

− 4
3
η1(1−η1)τ1

1− 2η1(1− η1)
. (3.16)

Again the corresponding expression for χ2 is obtained by simply swapping 1 ↔ 2 in
Eq. 3.16. The following steps are identical for χ1 and χ2, and so the indices will be
dropped. β is determined by fitting a simple exponential decay to Eq. 3.16 and analyti-
cally minimizing the integrated squared error

err2 =

∫ ∞
0

dτ
(
χ(τ)− e−

τ
β

)2

(3.17)

with respect to the parameter β. Note that for reasons of simplicity χ (τ = 0) is set to 1
without loss of generality. Minimizing requires ∂

∂β
err2 = 0, so one has to solve

0 =

∫ ∞
0

dτ
(
χ(τ)− e−

τ
β

)
τe−

τ
β . (3.18)

Carrying out this integral leads to a condition that relates β to η and hence the masses
of the fermions in the mixture:

(1− 2η)(1− η)

(2β + 3)2
+

η

(4η(1− η)β + 3)2 =
1

36
(1− 2η(1− η)). (3.19)

This polynomial equation can be solved numerically with Mathematica’s rootfinder. Con-
vergence to the physical root can be ensured by using an initial value for β obtained from
the small-time expansion of χ(τ), which gives an estimate of β = − 3

2(1−η)
.

A theory curve plotting β as a function of η is shown in figure 3.1. The orange and blue
points are results from Monte Carlo simulations which are described in detail in section
3.4. A list of values of β for the Li-K and a number of other mixtures can be found in
section 3.5.

3.3 Effect of the finite size of the initial perturbation

The analysis presented thus far is limited to the case of small deviations from thermal
equilibrium, and hence small initial energy anisotropies. In Monte Carlo simulations and
experiments, however, large anisotropies are required for good signal-to-noise ratios. Thus
understanding the effect of the finite departure from equilibrium is a necessary component
of the analysis of the simulations as well as experimental measurements.

Eq. 3.3 followed the convention of Ref. [71] and defined the relaxation rate in terms
of the final equilibrium collision rate. As pointed out in the same paper, one therefore
has to account for the fact that the mean collision rate undergoes slight changes during
the relaxation process as a consequence of the redistribution of energy[40]. Due to the
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Figure 3.1: Number of collisions per fermion needed for rethermalization. The blue line
indicates the theoretical prediction, while the orange, blue, and light blue points are results
of Monte-Carlo simulations. For the blue points, equal particle numbers N1 = N2 for both
species were assumed and the initial energy anisotropies were Ωx = 2 and Ωy = 65(blue)
and Ωx = 7 and Ωy = 4 (light blue). The orange points were obtained from simulations
with N1 = 2N2 and initial anisotropies Ωx = 1.6 and Ωy = 1.3.
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exponential nature of the relaxation, the bulk of rethermalization occurs at initial times,
so it is expected that the observed number of collisions needed for equilibration will be
rescaled by a factor of approximately

λ(Ωx,Ωy) =
〈Γcoll(t→∞)〉
〈Γcoll(t = 0)〉

. (3.20)

The function λ(Ωx,Ωy) has a maximum of 1 for Ωx = Ωy = 1 and goes to zero as either
Ωx or Ωy tend to 0 or ∞. In Ref. [71], an analytic expression for λ is derived under
the assumption of cylindrical symmetry of the anisotropy. In the general case that is of
interest here, λ can only be determined by means of numerical integration. This was done,
for example, to rescale the results from the Monte Carlo simulations shown in Fig. 3.1; the
points in this plot have been rescaled by a factor of λ(Ωx,Ωy)

−1.

3.4 Monte Carlo simulation

This section describes details of the Monte Carlo simulations that were used to test the
model of section 3.2 and verify its predictions. Subsection 3.4.1 gives an outline of the
simulations, while a more visual approach is taken in subsection 3.4.2, where the sequence
of steps carried out in the simulation is presented in a flowchart. Subsection 3.4.3 discusses
suitable parameter choices and some failure modes that were studied. Most of this section
is based on the work of Refs. [71, 45]; differences are pointed out where relevant.

3.4.1 Outline

The simulation is started by preparing an ensemble consisting of N1 type-1 and N2 type-
2 fermions in a harmonic trapping potential. This ensemble is initialized by assigning a
random position and velocity vector to each particle from separable Gaussian distributions
(equations 2.21). These distributions are scaled such that there is a factor of Ωx or,
respectively, Ωy imbalance between the mean kinetic and potential energies per particle
in the x and y dimensions with respect to the z dimension. The initial energy in a given
dimension, however, is the same for both species. The positions and velocities of the
particles are then evolved according to Newton’s laws for some small time step ∆t, before
collisions are considered.

Since the Pauli exclusion principle forbids intra-species collisions in a system of spin-
polarized fermions, only collisions of type-1 atoms with type-2 atoms are allowed. If two
particles k and l are found within a critical distance rc of each other, the pair is given a
chance to collide. The collision probability is given by pcoll = σklvrel∆t/Vc, where σkl is
the collisional cross section, vrel = |~vk − ~vl| is the relative collision speed, and Vc = 4

3
r3
cπ is

the volume of the sphere containing the colliding atoms. If pcoll is greater than a random
number drawn from a uniform distribution on (0,1), an s-wave collision takes place and the
relative velocity vector is rotated into a random direction (conserving the total momentum
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Figure 3.2: Typical relaxation curves of a Monte Carlo simulation of a Fermi-Fermi mixture
of 40K and 6Li with initial anisotropies Ωx = 1.33 and Ωy = 1.67; the particle numbers
NK and NLi were equal. The trapping frequencies (νx, νy, νz) were (1140, 934, 654) Hz
for potassium and (1957, 1122, 1603) Hz for lithium. The trapping frequencies and the
temperature correspond to realistic experimental conditions.
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and energy). Finally, after all possible collision pairs have been considered, the mean
energies of each species in each of the three Cartesian directions are recorded, and a new
time step proceeds.

Typical relaxation curves obtained from a simulation with 40K and 6Li atoms are shown
in figure 3.2. The parameters used in the simulation correspond to realistic parameters
from our experiments, cf. chapter 4. As expected, the lighter lithium atoms relax quickly,
while the heavier potassium atoms need a larger number of collisions to entirely redistribute
their energy.

The relaxation rate Γσ of the energy anisotropy of species σ is determined by fitting
the ratio of the energies in the respective directions to the ratio of decaying exponentials:

Ei
Ej

=
1 + εi exp(−Γσt)

1 + εj exp(−Γσt)
(3.21)

Here Ei (Ej) is the mean total energy per particle of the fermions in the ith (jth) direction,
and we have defined3:

εx =
2Ωx − Ωy − 1

Ωx + Ωy + 1

εy =
2Ωy − Ωx − 1

Ωx + Ωy + 1

εz =
2− Ωx − Ωy

Ωx + Ωy + 1
(3.22)

In case of cylindrical symmetry (Ωx = Ωy), this fitting model reduces to the form presented
in Ref. [71].

3.4.2 Flowchart of the Monte Carlo simulation

On pages 33–35, the structure and the individual steps of the Monte Carlo simulation
outlined in the previous section are presented in a simplified flowchart. For clarity’s sake,
some output options are not shown in the flowchart but will instead be discussed in the text.
These outputs can be used to double-check that the input parameters (such as collision
probability and search volume) are processed correctly in the simulations.

Suitable choices for these parameters are discussed in the next section. In order to
check the collision probability pcoll, the number Np of possible collisions found in Step 2,
and the number Nc of those collisions that actually take place (Step 3) are recorded for
every iteration step. The collision probability is simply given by the ratio Nc/Np. Proper
evaluation of the search volume Vc can be checked for by recording the number Nd of double
collisions found in Step 2, i.e. the number of incidents where more than two particles are
found within Vc. As the density distribution in the trap is known, it is easy to calculate if
Vc is processed correctly.

3Two assumptions are used to obtain these equations: the conservation of energy, and the isotropic
nature and energy independence of s-wave collisions that allow the relaxation to be described by an ansatz
of simple exponential decay ∆Ei(t) = ∆Ei(0)e−ΓF t to describe the relaxation.
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3.4.3 Choice of parameters

Monte-Carlo simulations are a very useful tool for simulating a variety of experiments, but
when first programming a new simulation, it turns out that this can be an experiment
om itself. For the simulation to produce reliable and plausible results, it is essential to
identify a suitable region of parameter space and to understand the effects of poorly-chosen
parameters.

Collision probability

Following Ref. [71], the probability of two particles k and l colliding was taken to be

pcoll =
σkl |~vk − ~vl|∆t

Vc
. (3.23)

This, however, does not represent a probability in the conventional sense, because the
equilibrium distribution of relative speeds is Gaussian, which means that for any given
values of the collision cross-section, time step and search volume, there is some finite
probability that the relative collision speed is large enough to make pcoll greater than one.
The actual distribution of times between collisions is given by a Poisson distribution [72],
so that the true collision probability is

Pcoll = 1− exp (−pcoll)
∼= pcoll for small pcoll (3.24)

Therefore, pcoll should be kept well below 10% for accurate results, which is also recom-
mended by Refs. [71] and [73]. Figure 3.3 depicts (1− exp (−pcoll)) (dashed) and pcoll
(dotted) for comparison.

Since it ignores any possibility of either 3-body collisions or multiple 2-body collisions
within a single time-step, Eq. 3.23 is still only approximate, but as it turns out it is still
very good until exceedingly poor choices of the parameters ∆t and rc are made.

Time step

Figure 3.3 shows the number of collisions per calculated collision time 〈τcoll〉 = 〈Γcoll〉−1

as a function of 〈pcoll〉 for a single-species simulation of (bosonic) particles in equilibrium.
Here, Vc and 〈vrel〉 are fixed to reasonable values, with ∆t used as a scaling parameter.
When 〈pcoll〉 becomes too large, an artificially lower number of collisions are observed than
would be expected, since collisions are searched for only once per time-step. The results
in figure 3.3 suggest that the approximation in Eq. 3.23 is still good for 〈pcoll〉 ∼ 1. The
simulations presented here typically use 〈pcoll〉 in the range of 5× 10−3 to 5× 10−2 and are
therefore expected to be accurate in this respect.
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Figure 3.3: Effect of poor choice of time-step on the Monte-Carlo simulation. Plotted
here is the number of collisions Nc per calculated collision time τ as a function of 〈pcoll〉
for a single-species gas of bosons in equilibrium. Blue points use pcoll, orange points use
1− exp(−pcoll) to calculate the collision probability in the simulations. The solid blue line
illustrates the expected behavior for a Poisson distribution. The orange lines show pcoll
(dotted) and 1− exp(−pcoll) (dashed), respectively. All simulations used 103 particles with
an average of 10−2 particles per search volume Vc.
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Search volume

Another input parameter that, if poorly chosen, can impair the correct outcome of a
simulation is the search volume Vc = 4

3
r3
cπ. Particles in the simulation must come within a

critical distance rc of each other for a collision to be considered. If Vc is large enough, any
given particle will see all N − 1 of the other particles within the volume, and the number
of collisions per particle in one collision time will saturate at (N − 1) 〈pcoll〉. On the other
hand, every increase in Vc will also lead to an increase in ∆t if 〈pcoll〉 is kept constant,
so from some point on collisions will not be searched for often enough and the number of
collisions per particle Nc and the collision time τ is expected to decrease.

Note that the approach taken here is different from Ref. [45]. To find an upper limit
for Vc, let us look at the average number of collisions per particle within the collision time
τ . Nc is determined by

Nc = Nc,tot ·
τ

∆t
· 2

N
, (3.25)

where Nc,tot is the total number of collisions detected within the time step ∆t, and N is
the number of particles in the simulation. There are always two particles involved in a
collision, hence the division by N/2. The total number of collisions Nc,tot is given by the
number of collision partners Np found in Vc multiplied by the collision probability pcoll.
Using the definition of Eq. 3.23, this leads to

Nc = Np ·
σ 〈vrel〉∆t

Vc
· τ

∆t
· 2

N

= 2 · Np

N
· σ 〈vrel〉

Vc
· τ . (3.26)

By substituting τ = Γ−1
coll = 1/ 〈n〉σ 〈vrel〉, the equation is further reduced to

Nc = 2 · Np

N
· 1

〈n〉Vc

≈ 2

〈n〉Vc
for large choices of Vc. (3.27)

This is exactly the behavior seen in figure 3.44. Choices of Vc such that 〈n〉Vc � 2 should
therefore lead to accurate results. The recommendation of Ref. [45] to keep 〈n〉Vc of the
order of 10−3 − 10−2 is therefore extremely conservative. The simulations presented here
typically use 〈n〉Vc = 10−1, which is still well within the range of validity, but leads to
large savings in computing time.

4The curve in figure 3.4 differs significantly from figure A.2 of Ref. [45], even though identical parameters
were used. Since the results here are in perfect agreement with expectations, I assume that there must be
a mistake in the documentation of Ref. [45].
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increasing Vc for a single-species gas in equilibrium. The dotted line marks Nc/τ = 1,
the dashed line shows the behavior when Vc is chosen to be too large, corresponding to
Nc ≈ 2/ 〈n〉Vc. All simulations used 103 particles with 〈pcoll〉 = 10−2.
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Particle numbers

There is one other input parameter which needs consideration. This parameter will not
influence the results of the simulation but rather its practicality. Monte Carlo simulations
require a considerable amount of computing resources. The computation time, which is
dominated by the pairwise search for collision partners, scales roughly as the product of
N1, N2, and the number of time steps, so simulations become impractical for N ≥ 105. As
an example, a simulation of 1.25× 104 fermions of each species with 5000 time steps took
approximately 8 hours an a computer with a 1.66 GHz processor and 2 gigabytes of RAM.

3.5 Results for β

In this section I will list predicted values of β for different Fermi-Fermi mixtures. One
should note that in mixtures with equal particle numbers, the approximations made in
equations 3.11 and 3.12 to determine these values for β lead to a slight overestimation
(underestimation) of β for light (heavy) fermions, corresponding to values of η that are
considerably smaller or larger than 1/2. Even though Eq. 3.19 allows β to be calculated
directly (which is why no uncertainties are given here), this indicates that our prediction
of β is more precise the smaller the mass difference between the fermions in the mixture.

Comparison of results from Monte Carlo simulations for various mass ratios with the
theory curve in figure 3.1 suggests that the approximations hold well for mixtures with
mass ratios up to m1/m2 ≈ 7. This corresponds to limits of η1 = 0.875 and η2 = 0.125 in
mixtures with equal particle numbers. The fermions in our experiment, 40K and 6Li have
a mass ratio of mK/mLi ≈ 6.67 that lies barely within these limits.

More accurate results for β in mixtures with large mass ratios can be obtained for
the case where the particle number of the lighter species is larger than that of the heavy
species, and the relaxations of both species take place on a similar timescale.

For mixtures of different spin states of a single species (η = 1/2), the expected value
of β is 3. So far, only one mixture of two different fermionic species has been realized
experimentally: 6Li and 40K, achieved both in our own lab [21], in Innsbruck and in
Amsterdam [36]. However, several other alkali and alkaline earth metals have been trapped
in magneto-optical traps or optical dipole traps ([29, 30, 31, 32, 33, 34]).

The following table lists values of β for different mixtures of these species. Only mix-
tures where the masses of the atoms yield values of η that lie within the range 0.125–0.875
are considered. The values of β in each row correspond to collisions of the element in the
left column with the elements in the top row, e.g. the value 7.3 in the second row denotes
the value of β for 40K in collisions with 6Li.
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6Li 40K 53Cr 87Sr 171Yb 173Yb 199Hg 201Hg
6Li 3 2.0

40K 7.3 3 2.8 2.5 2.2 2.2
53Cr 3.3 3 2.7 2.3 2.3 2.2 2.2
87Sr 3.9 3.5 3 2.6 2.5 2.5 2.5

171Yb 5.5 4.7 3.8 3 3.0 2.9 2.9
173Yb 5.6 4.8 3.8 3.0 3 2.9 2.9
199Hg 5.1 4.0 3.1 3.1 3 3.0
201Hg 5.2 4.0 3.1 3.1 3.0 3
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Chapter 4

Experimental realization of
cross-dimensional relaxation

This chapter gives an account of our experimental endeavors to observe cross-dimensional
relaxation in a Fermi-Fermi mixture of 6Li and 40K.

An overview of the experimental setup is given in section 4.1. In the following I will
outline the basic procedure of the measurements we have tried (section 4.2) and present
an extensive discussion of the potential pitfalls and experimental constraints of a CDR
measurement (section 4.3). The efforts we have made and the parameters we have used are
described (section 4.4). Possible reasons for the negative outcome of our experiments are
discussed and some suggestions for modified measurement techniques for possible further
investigation in the future are presented in section 4.5.

4.1 Experimental setup

Our experiment is a platform for the generation of an ultracold Fermi-Fermi-Bose mixture
of 6Li, 40K, and 87Rb atoms. It is set up on two tables. On the first table, three laser
systems, one for each species, provide the light required in the different phases of the
experiment. A brief description of these systems is given in subsection 4.1.1. This laser
light is transferred via optical fibers to the second table where the vacuum system is set up,
the atoms are trapped, and the experiments are performed. The experimental apparatus
is described in subsection 4.1.2. No contributions to the experimental setup were made for
this thesis, so the outlines given here will be kept short, and the reader will be referred
to the literature for further information, first and foremost to Matthias Taglieber’s PhD
thesis [22], in the course of which our experimental platform was developed from scratch.

4.1.1 Laser systems

Laser light with frequencies close to the relevant atomic resonances is needed for slowing,
magneto-optical trapping and further cooling of the atoms; for optical pumping of the
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Figure 4.1: 3D-CAD drawing of the experimental apparatus.

atoms into their magnetically trappable states; and the final detection of the atoms using
absorption imaging. An overview of the atomic energy levels relevant for the experiment
and of the optical transitions driven during the experimental cycle is given in Ref. [22].
Details and schematic block diagrams of our laser systems can also be found there, while
the setups of the lithium and potassium systems have been covered in detail in the diploma
theses of Arne-Christian Voigt [74] and Florian Henkel [75], respectively; hence only some
general information will be provided here.

The laser systems employed in our lab are completely diode-based. In the rubidium and
the potassium systems a power boost is attained by the use of two tapered amplifier sys-
tems. Single-mode operation of the laser diodes is ensured either by means of either grating
stabilization or injection locking, while long-term frequency stability is achieved by refer-
encing to atomic transitions. Frequency shifts are realized by acousto-optical modulators
(AOMs) in different configurations, i.e. single-, double- and quadruple-pass configuration,
and the use of electro-optical modulators (EOMs) allows the laser power to be attenuated
in a controlled way.

4.1.2 Experimental apparatus

The experimental setup is shown in Fig. 4.1. In order to reach the requisite low tempera-
tures the atoms are first captured and pre-cooled in a three-species magneto-optical trap
[21] at the center of a common magnetic quadrupole field in an initial vacuum chamber,
which we will refer to as the “MOT chamber”. Potassium and rubidium are loaded from
background vapor produced by atomic vapor dispensers. However, the comparatively low
saturation pressure of lithium requires higher temperatures during its sublimation to pro-
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duce enough atoms to work with, which makes its vapor loading inefficient since only a
small fraction of atoms have speeds below the typical MOT capture velocity. The lithium
is therefore loaded into the MOT from a Zeeman-slowed atomic beam. The three clouds
are then transferred into a magnetic quadrupole trap, also located in the MOT cham-
ber. The lifetime of the clouds in this trap is limited by collisions of the trapped atoms
with hot atoms from the residual background gas, so in order to achieve longer lifetimes
the clouds are subsequently transferred into a second chamber consisting of an ultra high
vacuum (UHV) glass cell with a residual pressure below 10−11 mbar. This transport is
realized by driving a sequence of shifted quadrupole coils (so-called “transfer coils” [76]).
At the end of the transport sequence the quadrupole trap is transformed into a quadrupole
Ioffe-configuration trap (QUIC trap) to avoid losses due to Majorana spin flips at low tem-
peratures1. In this final magnetic trap sympathetic cooling of the fermionic species with
evaporatively cooled rubidium atoms produces an ultracold mixture of the three species
with temperatures that can be low enough to reach quantum degeneracy [22, 78]. The
atoms are then loaded from the QUIC trap into an optical dipole trap (ODT) produced
by a pair of perpendicular laser beams with foci coinciding at the center of the magnetic
trap.

The ODT can be realized in either of two configurations, corresponding to combinations
of the vertical trap beam aligned along the z-axis, referred to as ODT2, with either of the
horizontal beams, referred to as ODT1 (along x) and ODT3 (along y), respectively. The
1/e2 radii of the beams at the trap center are wODT1 = 52 µm, wODT2 = 44 µm, and
wODT3 = 43 µm. The horizontal and vertical beams have perpendicular polarizations and
a frequency difference of 220 MHz, which is achieved by the use of two AOMs in the ODT
setup2. However, there is no frequency shift between the two horizontal beams, and so even
small deviations from perfectly perpendicular polarizations could result in optical lattice
effects. This is why no configuration including the two horizontal or all three beams is
used.

As indicated in Fig. 4.2, atoms trapped in the ODT12 configuration are imaged along
the direction of the ODT3 beam, which is perpendicular to the symmetry axis of the QUIC
trap (side-transverse imaging3). In the ODT23 configuration the atoms are detected by
imaging along the axis of the ODT1 beam, coaxial with the symmetry axis of the QUIC
trap (side-axial imaging; cf. Fig. 4.2).

4.2 Procedure

In all of the experiments described below, clouds of 6Li, 40K, and 87Rb atoms are first
captured and pre-cooled in the MOT as described in [21]. During the cooling process, the
three species are optically pumped into their most strongly confined and collisionally stable

1Details of the transfer coils and the QUIC trap in our experiments can be found in Christoph Eigen-
willig’s diploma thesis [77]

2details of this setup can be found in Wolfgang Wieser’s diploma thesis [70]
3For details of the imaging see [22]
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Figure 4.2: The atomic cloud in the QUIC-trap forms a cigar-shaped distribution aligned
along the x-axis. We call the imaging along the y-axis ‘side transverse’, and that along the
x-axis ‘side axial’.

states 87Rb |F = 2,mF = 2〉, 40K |9/2, 9/2〉, and 6Li |3/2, 3/2〉, before being transferred
into the QUIC trap, where the sympathetic cooling of lithium and potassium with the
evaporatively cooled rubidium takes place [78]. After 6Li and 40K have been cooled to
the desired temperatures (see below), rubidium is evaporated through the trap bottom,
and any residual 87Rb atoms in the |F = 2〉 manifold are removed by a resonant light
pulse. Thereafter the Fermi-Fermi mixture is adiabatically transferred into the ODT,
where first lithium and then potassium are transferred into the absolute ground states 6Li
|1/2, 1/2〉 and 40K |9/2,−9/2〉 by an adiabatic rapid passage (ARP) at 20.6 G. This order
is advantageous because, as a consequence of the inverted hyperfine structure of 40K, it
suppresses losses due to interspecies spin relaxations. Transfer efficiencies of the ARPs are
almost complete for both species, and the non-transferred fractions are below the detection
threshold [23].

The basic idea of what we have tried is as follows: In order to prepare the system for the
measurements, the atoms are loaded into the ODT and held for a sufficiently long time to
allow both species to reach thermal equilibrium before an energy anisotropy is introduced
between different spatial dimensions. This anisotropy is created by ramping the power in
one of the ODT beams either down or up, leading to an adiabatic change of the trapping
frequencies and thus producing an energy anisotropy between different directions, as the
change in energy in a given direction is proportional to that of the trapping frequencies.
Note that in this case of an ODT formed by a pair of crossed beams, the trapping frequency
along the direction of the beam which is ramped down stays almost the same, whereas the
trapping frequencies in the directions perpendicular to the beam axis change by different
amounts. To understand why, consider the trapping potential of each of the two beams
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individually. As shown in chapter 2, a Gaussian beam has a small intensity gradient and
therefore only weak confinement along its propagation axis. Perpendicular to this axis, the
intensity gradient – and thus the confinement – is large. In a crossed ODT consisting of
beams along the y- and z-directions, the confinement and therefore the trapping frequencies
are largest in the x direction, which is perpendicular to the propagation axes of both beams.
If now the beam along z is now ramped down, the trapping frequency in the x direction
is somewhat compensated by the strong confinement due to the other beam propagating
along y. The trapping frequency in the y direction, however, will change dramatically since
this is the axis of weaker confinement of the other beam.

Once the energy anisotropy has been introduced into the system, the trap beams are
kept steady, and the rethermalization process is observed. The time constant of the cross-
dimensional relaxation is extracted by holding the mixture for variable times in the final
trap and then measuring the aspect ratios of the clouds after time-of-flight expansion. It
was shown in chapter 2 that the square of the aspect ratio is proportional to the ratio
of energies in the the respective directions. In addition, the aspect ratio is hardly sensi-
tive to shot-to-shot variations in the absolute temperature of the cloud before the energy
anisotropy is created. From the absorption images after every shot one also determines
particle numbers of both species.

4.3 Experimental constraints

When trying to observe cross-dimensional relaxation, several constraints must be kept in
mind. Firstly, it is crucial to work at high enough temperatures to avoid Pauli blocking,
so the relaxation is not artificially slowed down. In agreement with [79], we therefore used
temperatures in the range of T/TF = 1 − 1.5. For an easier theoretical description of the
relaxation process, it is also important that the atoms remain in the harmonic region of
the trap. The size of this region is dependent on the light intensity in the trapping beams
and is smaller for low intensities. The distribution of the atoms in the trap, however,
is determined by the temperature, leading to a maximum temperature dependent on the
trapping potential, that should not be exceeded.

Secondly, it is important to work at densities and scattering lengths which are low
enough to ensure that the experiment is performed in the collisionless regime, but which
at the same time give rise to suitable mean times between collisions. Here ‘suitable’ means
long enough to be resolved experimentally, (i.e. ideally of the order of 10 ms), but not
too long, since at holding times of the order of 100 ms atom loss from the trap becomes
problematic for experimentally available ODT powers.

As a side note: So far, the constraints suggest that one could also use our magnetic
trap for the CDR measurements. Due to the much lower trapping frequencies, however,
the mean times between collisions are two orders of magnitude longer than in the ODT at
the required temperatures and densities.

From the theoretical model in chapter 3 we know that in the mixture of 6Li and 40K
the lithium atoms need an average of two (2.0) collisions for equilibration, whereas it is
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Figure 4.3: Adiabatic change of the trapping frequencies. Particles remain in the same
energy eigenstate.

more than seven (7.3) collisions for potassium. The relaxation of both species on a similar
time scale can therefore be achieved with a mixture where the particle numbers of lithium
in the trap are a factor of 3–4 times higher than those of potassium. Whatever the particle
numbers of both species, it is essential that their ratio remains stable from shot to shot
in order to obtain data suitable for analysis. For the same reason it is crucial to have
well-defined anisotropies. It is therefore necessary to wait until the gas in the trap is fully
thermalized before the ramp inroducing the anisotropy takes place.

The ramping of the beam has to be performed slowly enough for the trapping frequencies
to change adiabatically – adiabaticity is given for ∂tω � ω2 – so that no phase space
density is lost or oscillation is stimulated. Also, if the change is not adiabatic, the gas will
no more be thermalized in each directions, i.e. not have a Gaussian energy distribution
in the respective spatial dimensions. The ramp, however, has to be done on a time scale
much shorter than the mean time between collisions in the gas to avoid rethermalization
during the ramp so that the relaxation already during the ramp is negligible and the signal
stays strong. Figure 4.3 illustrates the adiabatic change of the trapping potential and its
effect on particles in energy eigenstates εn = n~ω.

The mean time between collisions, defined above as τ = Γ−1
coll = (〈n〉σ 〈vrel〉)−1, is tem-

perature dependent and shorter at higher energies4 since with increasing temperature 〈n〉
decreases more slowly than 〈vrel〉 increases. Starting at higher temperatures therefore re-
duces the holding time required for equilibration before the actual part of the measurement
begins, which is why in most measurements we chose to ramp the beam down. Due to
their mass difference lithium and potassium have a different graviational sag in the trap
that leads to a decrease in the density overlap and thus to an increase of the mean time
between collisions when the trapping frequency in the vertical direction is lowered. To
avoid this effect, only the vertical beam is used for the creation of energy anisotropies, as
a change in its intensity mainly affects the trapping frequencies in the horizontal plane.

When the vertical (z) beam is ramped down (up), the trapping frequencies in the
x and y directions hange to lower (higher) values, leading to a decrease (increase) in

4Note that for our estimates of τ , we used σ = (70a0)2, which is suggested by (ref!). Here, a0 is the
Bohr radius.
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Figure 4.4: Expected aspect ratio for different energy anisotropies: Plotted is the calculated
aspect ratio rz/ry of the lithium cloud as a function of the time of flight for trapping
frequencies (νx, νy, νz) = (1707, 586, 1603) Hz. The dashed line depicts the aspect ratio of
a thermalized cloud, the colored lines show the ratio for different energy anisotropies during
the rethermalization process: Ez/Ey = 1.73 (blue), Ez/Ey = 1.5 (orange), Ez/Ey = 1.25
(light blue).

temperature in the respective directions. The energy change in a given direction after the
ramp is then proportional to the change of the corresponding trapping frequency Enew,i =
Einitial · ωnew,i/ωinitial,i with i = x, y, z.

The anisotropies in the gas can then be determined by calculating the energy ratios
after the ramp with respect to the lowest of the three energies. It is important to note that
in the experiment the aspect ratio of the cloud is measured, which is not proportional to
the energy ratio, but only to its square root

√
Ei/Ej. For anisotropies Ω ≤ 1.7 qualified

as “reasonable” in the previous chapter, one therefore expects a signal of ∼ 1.3 times the
aspect ratio relaxing towards 1 times the aspect ratio. Clearly, this is not a very strong
signal, so a good signal-to-noise ratio is required in order to obtain useful data. Figure
4.4 gives an impression of the sort of signal we were hoping to detect. The aspect ratio is
determined from absorption images after time-of-flight expansion. This is another reason
why the trapping potential is required to be as close to harmonic as possible since if it is
not, the ballistic expansion of the cloud does not follow the description given in subsection
2.1.2.

One factor that would clearly influence the relaxation process is collisions of the lithium
and potassium atoms with either rubidium atoms or different spin-states of the same species
left in the trap. The number of residual rubidium atoms and the fraction of different spin-
states of lithium and potassium left in the trap after the state-preparation were below the
detection threshold, so that we can savely neglect their effect on the relaxation. While ru-
bidium can only be checked for by taking an absorption image, there are two ways to verify
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Figure 4.5: Illustrative example of wings as seen in the side-transverse imaging. The figure
shows an intra-trap image of potassium taken after 100 ms of holding following a 125 ms
ramp of the ODT. The beam powers were ODT1 = 2.2 W, ODT2 = 1.1 W corresponding
to trapping frequencies νx = 730 Hz, νy = 1034 Hz, and νz = 732 Hz. The circular cloud
at the trap center has a diameter of about 22 µm.

the absence of spin-mixtures after the state-preparation. One is a Stern-Gerlach separation
of the different spin-states, and the second is to prepare a cloud of only one species, either
lithium or potassium, in the trap and create an energy anisotropy. Since s-wave collisions
are suppressed for identical fermions, no rethermalization should be observed.

4.4 Measurements

On starting the experiment, it soon became clear that we would not be able to use the
ODT12 configuration for our measurements. Although we tried a number of different
loading schemes from the QUIC trap into the ODT (linear and nonlinear QUIC ramps
with durations of 100 to 500 ms, ODT ramps ranging from 10 to 125 ms), we found no way
to avoid ‘wings’ – i.e. atoms trapped along the ODT1 beam outside the harmonic region at
the trap center (cf. Fig. 4.5). These wings are a consequence of the loading from the QUIC
trap, whose axis coincides with that of the ODT1 beam. The approximate distribution of
the atoms in the QUIC trap and the axes of the ODT beams are shown in Fig. 4.2. At the
low temperatures normally used in our experiments with quantum-degenerate gases, these
wings never were a problem since the cloud in the trap center was spatially distinct from
the wings. At the comparatively high temperatures required for the CDR measurement,
however, the cloud in the center is more expanded, and even if the wings contain only
a small fraction of the total atoms, in which case their effect on the relaxation may be
neglected, fitting of the cloud sizes is not accurate enough with wings present as the signal
is small anyway.

In the ODT23 trap configuration, where both trapping beams are in a plane perpen-
dicular to the axis of the QUIC trap, no wings appeared in the absorption images. A
clear disadvantage of this configuration, however, is that the ODT3 beam does not have
independent intensity stabilization, but is stabilized via the ODT1 beam. A clear disad-
vantage of this configuration is, however, that the ODT3 beam does not have an intensity
stabilization on its own but is stabilized via the ODT1 beam. In the current setup, the two
horizontal beams are split only after a common AOM by the usual means of a half-wave
plate followed by a polarizing beamsplitter. In principle, this allows for arbitrary power
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ratios of the two beams; in order to have the ODT3 beam properly stabilized, however, it
is advisable not to choose a too low intensity for the ODT1 beam, which limits the power
available in the experiment as compared with the ODT12 configuration. The maximum
intensity ratio used in our measurements was ODT3 : ODT1 = 2 : 1.

In the measurements described below, the QUIC trap was switched off within 100 ms
and the atoms were held in the ODT for a further 50 ms for thermalization and state
preparation purposes before an energy anisotropy was introduced. This anisotropy was
created by ramping the power of the vertical trap beam (ODT2) while the power of the
horizontal beam was kept constant. Typical ramp durations were 8 - 10 ms, which is in
accordance with the considerations outlined above. In most cases, the ODT2 beam was
ramped down and not up, since this way less time is required for the initial equilibration
before the energy anisotropy is introduced.

In the following an examples is presented to illustrate the difficulties we have had. The
parameters used in the other runs were similar to those used here. In this exemplary run
the power of the horizontal beam was set to 1.6 W, and the power of the vertical beam
was ramped from 0.85 W down to 0.30 W within 8 ms. The resulting intial anisotropies
were Ez/Ey = 1.73 and Ex/Ey = 1.55, the former of which would be observed. These
anisotropies are slightly higher than recommended above but in order to obtain first signals
of CDR at all, they are a valid choice since we can only detect the square root of the
anisotropy,

√
Ez/Ey = 1.32, which is a small signal. Figure 4.4 shows the expected aspect

radio of the expanding cloud as a function of the time of flight for different stages of the
relaxation process. The particle numbers in this run were NK = 5× 104 NLi = 7× 104, so
for a temperature T/TF ∼ 1.5, the average densities before (after) the ramp were 〈nLi〉K =
2.2 × 1012 cm−3 (1.5 × 1012 cm−3) and 〈nK〉Li = 1.6 × 1012 cm−3 (1.1 × 1012 cm−3). The
respective mean times between collision were τK = 15 ms (24 ms) and τLi = 21 ms (35 ms).
Knowing that lithium would on average need two collisions per particle for rethermalization,
we expected to observe a clear signal within the first 100 ms after ramping. In order to
get a reliable fit of the aspect ratio, the time of flight for lithium was chosen such that
the ratio was stable against slight variations in the expansion time. Figure 4.4 shows
that immediately after the release of the cloud from the trap the density distrubtion and
therefore the ratio undergoes rapid change that is dependent on the trapping frequencies
whereas the long term evolution dependends only on the energies of the cloud in the
respective directions. A viable choice was therefore a time of flight of 2 ms for lithium.
Due to technical limitations, the potassium cloud could be imaged only 3 ms later, where
the low optical density did not permit the aspect ratio to be fitted properly. While we
could very clearly detect the initial anisotropy, we were not able to observe a relaxation or
any defined behavior at all after various holding times except for large fluctuations. What
we did observe, however, were particle losses which made accurate fitting after a holding
time of 100 ms impossible. The ratio of trap depth over temperature was around 21 for
lithium and almost twice as much for potassium, so the losses in lithium were more severe.
In other runs with slightly altered parameters our observations were similar, in one case
even suggesting a small cooling effect on potassium by the lithium atoms lost from the trap.
In an attempt ro ramp the power of the vertical beam up (1.5 W in the horizontal beam,
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vertical beam 0.55 W up to 1.2 W within 9 ms) to create a higher trap depth for lithium,
we were also able to observe the initial anisotropy but could not observe any relaxation
due to a bad signal-to-noise ratio and fluctuations in the particle numbers.

4.5 Discussion and outlook

As simple as the basic principle of the measurements described in this chapter may seem,
as challenging is its realization.

Facing major constraints regarding the possible holding times in the trap and the
quality of the signal needed, a right set of parameters have to be found in order to obtain
analyzable data. As we have not been able to obtain usable results by the time this thesis
goes to print, more time will have to be invested.

A good signal requires large anisotropies and those can only be achieved by adiabatically
changing the power of one of the beams by a considerable amount. As a consequence, the
mean time between collisions is comparatively long (∼ 30 ms, of course dependent on the
exact parameters) either during the intial thermalization after loading from the QUIC trap
into the ODT (if the power is ramped up) or during the CDR process after the ramp (if
the power is ramped down). Therefore, very long holding times are required in total, and
this leads to a loss of atoms from the trap.

One way to resolve this problem might be the use of higher intensities in the trapping
beams, which would lead to a stronger confinement and higher collisions rates and thus
shorter time scales of the relaxation process.

There is also another method to create a cross-dimensional energy anisotropy, which
we have not yet tried. Intensity-modulation of a trap beam with a frequency that is close
to the twice the trapping frequency 2ωi or one of the subharmonic frequencies 2ωi/n leads
to an exponential increase in the mean energy of the respective direction i. This is called
parametric heating [80]. Compared with our procedure of simply ramping one of the beams
down or up, it is more complicated to calculate the energy anisotropy in this case. It might,
however, be an option worth trying since large anisotropies can be created while the mean
beam power is kept high.

In general, the method to use CDR in order to determine the elastic scattering cross-
section has limited accuracy because of systematic uncertainties in the atom number, which
is typically determined from absorption imaging. Experimental imperfections such as fre-
quency jitter, imperfect polarization of the probe beam, or fluctuation and tilt of the
magnetic field during imaging tend to reduce the absorption of the probe beam, which
leads to an underestimation of the particle number. Cross-dimensional relaxation pro-
cesses in lithium and potassium are very sensitive to variations in the particle number,
and for the fitting model which determines the elastic scattering cross-section, knowledge
of the particle numbers of both species is crucial.

In the measurements presented here, the magnetic field that ensured spin-polarization
in the mixture was chosen to be 20 G. At a magnetic field of this strength, the elastic
scattering cross-section between lithium and potassium can be considered independent of
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the magnetic field. Once the problems described above have been resolved, it will be
interesting to probe the scattering cross-section at fields close to a Feshbach resonance,
where two colliding atoms couple resonantly to a bound molecular state and the scattering
cross-section tends to unitarity [36].
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Chapter 5

Conclusion

In this thesis, a kinetic model for cross-dimensional rethermalization in Fermi-Fermi mix-
tures was developed that allows for accurate predictions of the number β of collisions per
fermion needed for equilibration as a function of the masses of the fermions in the mixture.
Detailed classical Monte Carlo simulations were carried out to test the validity of these
predictions for a wide range of parameters. Effects due to the finite initial departure from
thermal equilibrium were addressed, and limits on the magnitudes of the initial anisotropies
were derived. It was shown that the difference in mass between the fermions in the mixture
can lead to a factor of ∼ 4 difference in the values of β for light and heavy fermions. For
the mixture of 6Li and 40K used in our experiment the respective values were determined
to be βLi = 2.0 and βK = 7.3.

Based on these theoretical predictions, attempts were made to probe the elastic collision
cross section and thus the absolute value of the s-wave scattering length of the ultracold,
dilute, nondegenerate mixture of 6Li and 40K.

Once the experimental difficulties that hampered these attempts have been resolved,
rethermalization measurements of this type can be used not only to determine the elastic
collision cross section at a magnetic field of zero magnetic field, i.e. at a magnetic guid-
ance field that has no influence on the scattering length, but also to map out Feshbach
resonances.
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Appendix A

Thermal averages with different
energy anisotropies for each species

Although we assume the energy anisotropy to be the same for each species at the beginning
and the end of the relaxation, i.e. Ωx, Ωy and 1, respectively, the fact that β1 and β2 are
generally different for two species with unequal masses m1 6= m2 means that the two species
will have different anisotropies at intermediate times.

The theory presented in section 3.2 assumes separable Gaussian distributions for each
species in each direction. When calculating thermal averages, however, it is important to
note that the center-of-mass (c.m.) and relative velocities are generally correlated if the
energy anisotropy is not the same for each species:
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Here Eσ,i is the mean energy for species σ in the ith direction, and we have defined1:
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To obtain the approximations made in equations 3.11 and 3.12, we are interested in ratios
of the type 〈
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2
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〉
〈vrel〉

〈
v2
rel,i

〉 , (A.3)

1Note that our definition of εrel,i differs from that given in Ref. [45]. The definition there is an error,
all calculations used the correct form (private communication).
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and
〈vrelVc.m.,ivrel,i〉
〈vrel〉 〈Vc.m.,ivrel,i〉

, (A.4)

which, in accordance with [71], we claim to be roughly equal to 4/3 for “reasonable”
anisotropies Ωx and Ωy (see below). By using the distribution function exp exp (−H/kBT )
along with the definitions above, one can calculate the following averages:〈

v2
rel,i

〉
=

E1,i

m1

+
E2,i

m2

〈Vc.m.,ivrel,i〉 =
E1,i − E2,i

m1 +m2

(A.5)

For the other averages of interest

〈vrel〉,〈
vrelv

2
rel,i

〉
,

〈vrelVc.m.,ivrel,i〉,

one can also find analytic solutions if there is a cylindrical symmetry Ωx = Ωy [45]. In the
general case, where Ωx 6= Ωy, this appears not to be possible. In order to determine an
upper limit on the size of a “reasonable” anisotropy, we therefore have to rely on numerical
integration2.

The limit on the magnitudes of the initial anisotropies were chosen so that the ratios
in equations A.3 and A.4 deviate from 4/3 by a maximum of 5% during the relaxation
process; i.e. the ratios stay between 1.40 and 1.27. For any choice of Ωy, this allows an
upper limit for Ωx to be given:

Ωy Ωx

1.1 < 1.5
1.2− 1.3 < 1.6
1.4− 1.5 < 1.7
1.6− 1.7 < 1.8

Figures A.1 and A.2 show the ratios of equations A.3 and A.4 as a function of the mass
ratio m1/m2 for varying anisotropies Ωx,1, Ωy,1, Ωx,2, and Ωy,1. Plot B in A.2 is included for
the sake of completeness, although we strongly recommend using the axes with the larger
anisotropy for fitting due to the better signal-to-noise ratio. Jittery lines in Fig. A.1 are
the result of difficulties with the numerical integration. The integrals over the ratios given
in equation A.3 can be reduced to a three-dimensional representation which Mathematica
can handle well, whereas integrals of the type presented in equation A.1 require numerical
integration in four dimensions, which for some parameters led to problems that couldn’t
be resolved in appropriate time.

2As a cross-check, the algorithm (Mathematica’s Global Adaptive) was also used for calculations where
comparison with analytic solutions was possible.
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To give an impression of how the ratios of equation A.3 change during a realistic
rethermalization process, Fig. A.3 plots the time evolution of

〈
vrelv

2
rel,x

〉
/ 〈vrel〉

〈
v2
rel,x

〉
and

〈
vrelv

2
rel,z

〉
/ 〈vrel〉

〈
v2
rel,z

〉
for a mixture of 6Li and 40K. The anisotropies Ωx,σ(t) and

Ωy,σ(t) used to obtain these plots were taken from the relaxation curves of Fig. 3.2, where
parameters were used that correspond to those of our experiment.
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Figure A.1: The value of 〈vrelVc.m.,xvrel,x〉 / 〈vrel〉 〈Vc.m.,xvrel,x〉 for different anisotropies and
mass ratios. The jittery parts result from problems with the numerical integration. Com-

parison with plot A in A.2 suggests that
〈vrelv2rel,i〉
〈vrel〉〈v2rel,i〉

≈ 〈vrelVc.m.,ivrel,i〉
〈vrel〉〈Vc.m.,ivrel,i〉 , which can be shown

to hold exactly in the cylindrically symmetric case[45].
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Figure A.2: The value of
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2
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〉
/ 〈vrel〉
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for different anisotropies and mass ratios.
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Figure A.3: Time evolution of the ratio
〈
vrelv

2
rel,i

〉
/ 〈vrel〉

〈
v2
rel,i

〉
in the y and z directions

corresponding to the relaxation curves of Fig. 3.2.
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[58] D. Lüst, Quantenmechanik (Vorlesungsskript). LMU München.

[59] E. P. Wigner, “On the Behavior of Cross Sections Near Thresholds,” Phys. Rev. 73
(1948), no. 9, 1002–1009.

[60] A. Derevianko, J. F. Babb, and A. Dalgarno, “High-precision calculations of van der
Waals coefficients for heteronuclear alkali-metal dimers,” Phys. Rev. A 63 (Apr,
2001) 052704.

[61] A. Derevianko, W. R. Johnson, M. S. Safronova, and J. F. Babb, “High-Precision
Calculations of Dispersion Coefficients, Static Dipole Polarizabilities, and Atom-Wall
Interaction Constants for Alkali-Metal Atoms,” Phys. Rev. Lett. 82 (1999), no. 18,
3589–3592.

[62] Z.-C. Yan, J. F. Babb, A. Dalgarno, and G. W. F. Drake, “Variational calculations
of dispersion coefficients for interactions among H, He, and Li atoms,” Phys. Rev. A
54 (1996), no. 4, 2824–2833.

[63] A. E. Siegman, Lasers. University Science Books, Sausalito, CA, 1986.

[64] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of
Neutral Sodium Atoms with Radiation Pressure,” Phys. Rev. Lett. 59 (Dec, 1987)
2631–2634.

[65] D. E. Pritchard, E. L. Raab, V. Bagnato, C. E. Wieman, and R. N. Watts, “Light
Traps Using Spontaneous Forces,” Phys. Rev. Lett. 57 (Jul, 1986) 310–313.



68 BIBLIOGRAPHY

[66] A. L. Migdall, J. V. Prodan, W. D. Phillips, T. H. Bergeman, and H. J. Metcalf,
“First Observation of Magnetically Trapped Neutral Atoms,” Phys. Rev. Lett. 54
(Jun, 1985) 2596–2599.

[67] T. Bergeman, G. Erez, and H. J. Metcalf, “Magnetostatic trapping fields for neutral
atoms,” Phys. Rev. A 35 (Feb, 1987) 1535–1546.

[68] R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov, “Optical dipole traps for
neutral atoms,” MOLECULAR AND OPTICAL PHYSICS 42 (2000) 95.

[69] J. D. Jackson, Classical Electrodynamics, 3rd Ed. John Wiley & Sons, Inc.,
Hoboken, NJ, 1998.

[70] W. Wieser, “An optical dipole trap for ultracold bosons and fermions,” 2006.

[71] J. Goldwin, S. Inouye, M. L. Olsen, and D. S. Jin, “Cross-dimensional relaxation in
Bose-Fermi mixtures,” Phys. Rev. A 71 (2005), no. 4, 043408.

[72] R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics. Prentice Hall,
Englewood Cliffs, NJ, 1995.
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so vielfältigen Seminare, an denen ich teilnehmen durfte, waren für mich eine Art Studium
Generale, die dort entstandenen Freundschaften eine große Bereicherung. Ich werde immer
gern an die Begegnungen an Orten wie Schloss Eichholz, Wendgräben und Cadenabbia
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